Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.043
1.
Med Sci Monit ; 30: e943802, 2024 May 14.
Article En | MEDLINE | ID: mdl-38741355

BACKGROUND The thalamocortical tract (TCT) links nerve fibers between the thalamus and cerebral cortex, relaying motor/sensory information. The default mode network (DMN) comprises bilateral, symmetrical, isolated cortical regions of the lateral and medial parietal and temporal brain cortex. The Coma Recovery Scale-Revised (CRS-R) is a standardized neurobehavioral assessment of disorders of consciousness (DOC). In the present study, 31 patients with hypoxic-ischemic brain injury (HI-BI) were compared for changes in the TCT and DMN with consciousness levels assessed using the CRS-R. MATERIAL AND METHODS In this retrospective study, 31 consecutive patients with HI-BI (17 DOC,14 non-DOC) and 17 age- and sex-matched normal control subjects were recruited. Magnetic resonance imaging was used to diagnose HI-BI, and the CRS-R was used to evaluate consciousness levels at the time of diffusion tensor imaging (DTI). The fractional anisotropy (FA) values and tract volumes (TV) of the TCT and DMN were compared. RESULTS In patients with DOC, the FA values and TV of both the TCT and DMN were significantly lower compared to those of patients without DOC and the control subjects (p<0.05). When comparing the non-DOC and control groups, the TV of the TCT and DMN were significantly lower in the non-DOC group (p<0.05). Moreover, the CRS-R score had strong positive correlations with the TV of the TCT (r=0.501, p<0.05), FA of the DMN (r=0.532, p<0.05), and TV of the DMN (r=0.501, p<0.05) in the DOC group. CONCLUSIONS This study suggests that both the TCT and DMN exhibit strong correlations with consciousness levels in DOC patients with HI-BI.


Cerebral Cortex , Coma , Consciousness , Diffusion Tensor Imaging , Hypoxia-Ischemia, Brain , Thalamus , Humans , Female , Male , Middle Aged , Thalamus/physiopathology , Thalamus/diagnostic imaging , Hypoxia-Ischemia, Brain/physiopathology , Hypoxia-Ischemia, Brain/diagnostic imaging , Adult , Consciousness/physiology , Diffusion Tensor Imaging/methods , Cerebral Cortex/physiopathology , Cerebral Cortex/diagnostic imaging , Retrospective Studies , Coma/physiopathology , Coma/diagnostic imaging , Magnetic Resonance Imaging/methods , Default Mode Network/physiopathology , Default Mode Network/diagnostic imaging , Consciousness Disorders/physiopathology , Consciousness Disorders/diagnostic imaging , Aged
2.
J Affect Disord ; 356: 470-476, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38608766

Previous large-sample postmortem study revealed that the expression of miR-1202 in brain tissues from Brodmann area 44 (BA44) was dysregulated in patients with major depressive disorder (MDDs). However, the specific in vivo neuropathological mechanism of miR-1202 as well as its interplay with BA44 circuits in the depressed brain are still unclear. Here, we performed a case-control study with imaging-genetic approach based on resting-state functional magnetic resonance imaging (MRI) data and miR-1202 quantification from 110 medication-free MDDs and 102 healthy controls. Serum-derived circulating exosomes that readily cross the blood-brain barrier were isolated to quantify miR-1202. For validation, repeated MR scans were performed after a six-week follow-up of antidepressant treatment on a cohort of MDDs. Voxelwise factorial analysis revealed two brain areas (including the striatal-thalamic region) in which the effect of depression on the functional connectivity with BA44 was significantly dependent on the expression level of exosomal miR-1202. Moreover, longitudinal change of the BA44 connectivity with the striatal-thalamic region in MDDs after antidepressant treatment was found to be significantly related to the level of miR-1202 expression. These findings revealed that the in vivo neuropathological effect of miR-1202 dysregulation in depression is possibly exerted by mediating neural functional abnormalities in BA44-striatal-thalamic circuits.


Depressive Disorder, Major , Exosomes , Magnetic Resonance Imaging , MicroRNAs , Humans , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/genetics , Male , Female , MicroRNAs/genetics , Adult , Exosomes/metabolism , Exosomes/genetics , Case-Control Studies , Middle Aged , Antidepressive Agents/therapeutic use , Antidepressive Agents/pharmacology , Thalamus/diagnostic imaging , Thalamus/metabolism , Thalamus/physiopathology , Brain/diagnostic imaging , Brain/physiopathology
3.
J Neural Eng ; 21(3)2024 May 07.
Article En | MEDLINE | ID: mdl-38653252

Objective.Beta triggered closed-loop deep brain stimulation (DBS) shows great potential for improving the efficacy while reducing side effect for Parkinson's disease. However, there remain great challenges due to the dynamics and stochasticity of neural activities. In this study, we aimed to tune the amplitude of beta oscillations with different time scales taking into account influence of inherent variations in the basal ganglia-thalamus-cortical circuit.Approach. A dynamic basal ganglia-thalamus-cortical mean-field model was established to emulate the medication rhythm. Then, a dynamic target model was designed to embody the multi-timescale dynamic of beta power with milliseconds, seconds and minutes. Moreover, we proposed a closed-loop DBS strategy based on a proportional-integral-differential (PID) controller with the dynamic control target. In addition, the bounds of stimulation amplitude increments and different parameters of the dynamic target were considered to meet the clinical constraints. The performance of the proposed closed-loop strategy, including beta power modulation accuracy, mean stimulation amplitude, and stimulation variation were calculated to determine the PID parameters and evaluate neuromodulation performance in the computational dynamic mean-field model.Main results. The Results show that the dynamic basal ganglia-thalamus-cortical mean-field model simulated the medication rhythm with the fasted and the slowest rate. The dynamic control target reflected the temporal variation in beta power from milliseconds to minutes. With the proposed closed-loop strategy, the beta power tracked the dynamic target with a smoother stimulation sequence compared with closed-loop DBS with the constant target. Furthermore, the beta power could be modulated to track the control target under different long-term targets, modulation strengths, and bounds of the stimulation increment.Significance. This work provides a new method of closed-loop DBS for multi-timescale beta power modulation with clinical constraints.


Basal Ganglia , Beta Rhythm , Deep Brain Stimulation , Parkinson Disease , Deep Brain Stimulation/methods , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Humans , Basal Ganglia/physiopathology , Basal Ganglia/physiology , Beta Rhythm/physiology , Models, Neurological , Thalamus/physiology , Thalamus/physiopathology , Cerebral Cortex/physiopathology , Cerebral Cortex/physiology , Computer Simulation , Neural Pathways/physiology , Neural Pathways/physiopathology
4.
J Integr Neurosci ; 23(4): 77, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38682227

BACKGROUND: Motor neuron diseases (MNDs) are progressive neurodegenerative disorders characterized by motor impairment and non-motor symptoms. The involvement of the thalamus in MNDs, especially in conditions such as amyotrophic lateral sclerosis (ALS), and its interaction with frontotemporal dementia (FTD), has garnered increasing research interest. This systematic review analyzed magnetic resonance imaging (MRI) studies that focused on thalamic alterations in MNDs to understand the significance of these changes and their correlation with clinical outcomes. METHODS: Following PRISMA 2020 guidelines, the PubMed and Scopus databases were searched from inception to June 2023 for studies related to MRI findings in the thalamus of patients with MNDs. Eligible studies included adult patients diagnosed with ALS or other forms of MND who underwent brain MRI, with outcomes related to thalamic alterations. Studies were evaluated for risk of bias using the Newcastle-Ottawa scale. RESULTS: A total of 52 studies (including 3009 MND patients and 2181 healthy controls) used various MRI techniques, including volumetric analysis, diffusion tensor imaging, and functional MRI, to measure thalamic volume, connectivity, and other alterations. This review confirmed significant thalamic changes in MNDs, such as atrophy and microstructural degradation, which are associated with disease severity, progression, and functional disability. Thalamic involvement varies across different MND subtypes and is influenced by the presence of cognitive impairment and mutations in genes including chromosome 9 open reading frame 72 (C9orf72). The synthesis of findings across studies indicates that thalamic pathology is a prevalent early biomarker of MNDs that contributes to motor and cognitive deficits. The thalamus is a promising target for monitoring as its dysfunction underpins a variety of clinical symptoms in MNDs. CONCLUSIONS: Thalamic alterations provide valuable insights into the pathophysiology and progression of MNDs. Multimodal MRI techniques are potent tools for detecting dynamic thalamic changes, indicating structural integrity, connectivity disruption, and metabolic activity.


Magnetic Resonance Imaging , Motor Neuron Disease , Thalamus , Humans , Thalamus/diagnostic imaging , Thalamus/pathology , Thalamus/physiopathology , Motor Neuron Disease/diagnostic imaging , Motor Neuron Disease/pathology , Motor Neuron Disease/physiopathology , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/physiopathology
5.
Brain Behav ; 14(5): e3490, 2024 May.
Article En | MEDLINE | ID: mdl-38680077

Word finding difficulty is a frequent complaint in older age and disease states, but treatment options are lacking for such verbal retrieval deficits. Better understanding of the neurophysiological and neuroanatomical basis of verbal retrieval function may inform effective interventions. In this article, we review the current evidence of a neural retrieval circuit central to verbal production, including words and semantic memory, that involves the pre-supplementary motor area (pre-SMA), striatum (particularly caudate nucleus), and thalamus. We aim to offer a modified neural circuit framework expanded upon a memory retrieval model proposed in 2013 by Hart et al., as evidence from electrophysiological, functional brain imaging, and noninvasive electrical brain stimulation studies have provided additional pieces of information that converge on a shared neural circuit for retrieval of memory and words. We propose that both the left inferior frontal gyrus and fronto-polar regions should be included in the expanded circuit. All these regions have their respective functional roles during verbal retrieval, such as selection and inhibition during search, initiation and termination of search, maintenance of co-activation across cortical regions, as well as final activation of the retrieved information. We will also highlight the structural connectivity from and to the pre-SMA (e.g., frontal aslant tract and fronto-striatal tract) that facilitates communication between the regions within this circuit. Finally, we will discuss how this circuit and its correlated activity may be affected by disease states and how this circuit may serve as a novel target engagement for neuromodulatory treatment of verbal retrieval deficits.


Mental Recall , Semantics , Humans , Mental Recall/physiology , Brain/physiology , Brain/physiopathology , Brain/diagnostic imaging , Neural Pathways/physiology , Neural Pathways/physiopathology , Nerve Net/diagnostic imaging , Nerve Net/physiology , Nerve Net/physiopathology , Memory Disorders/physiopathology , Memory Disorders/therapy , Thalamus/physiology , Thalamus/diagnostic imaging , Thalamus/physiopathology
6.
Epilepsy Res ; 202: 107359, 2024 May.
Article En | MEDLINE | ID: mdl-38582072

PURPOSE: In developmental and epileptic encephalopathy with spike-and-wave activation in sleep (DEE-SWAS), the thalamocortical network is suggested to play an important role in the pathophysiology of the progression from focal epilepsy to DEE-SWAS. Ethosuximide (ESM) exerts effects by blocking T-type calcium channels in thalamic neurons. With the thalamocortical network in mind, we studied the prediction of ESM effectiveness in DEE-SWAS treatment using phase-amplitude coupling (PAC) analysis. METHODS: We retrospectively enrolled children with DEE-SWAS who had an electroencephalogram (EEG) recorded between January 2009 and September 2022 and were prescribed ESM at Okayama University Hospital. Only patients whose EEG showed continuous spike-and-wave during sleep were included. We extracted 5-min non-rapid eye movement sleep stage N2 segments from EEG recorded before starting ESM. We calculated the modulation index (MI) as the measure of PAC in pair combination comprising one of two fast oscillation types (gamma, 40-80 Hz; ripples, 80-150 Hz) and one of five slow-wave bands (delta, 0.5-1, 1-2, 2-3, and 3-4 Hz; theta, 4-8 Hz), and compared it between ESM responders and non-responders. RESULTS: We identified 20 children with a diagnosis of DEE-SWAS who took ESM. Fifteen were ESM responders. Regarding gamma oscillations, significant differences were seen only in MI with 0.5-1 Hz slow waves in the frontal pole and occipital regions. Regarding ripples, ESM responders had significantly higher MI in coupling with all slow waves in the frontal pole region, 0.5-1, 3-4, and 4-8 Hz slow waves in the frontal region, 3-4 Hz slow waves in the parietal region, 0.5-1, 2-3, 3-4, and 4-8 Hz slow waves in the occipital region, and 3-4 Hz slow waves in the anterior-temporal region. SIGNIFICANCE: High MI in a wider area of the brain may represent the epileptic network mediated by the thalamus in DEE-SWAS and may be a predictor of ESM effectiveness.


Anticonvulsants , Electroencephalography , Ethosuximide , Sleep , Humans , Ethosuximide/therapeutic use , Ethosuximide/pharmacology , Male , Female , Electroencephalography/methods , Retrospective Studies , Anticonvulsants/therapeutic use , Anticonvulsants/pharmacology , Child, Preschool , Child , Sleep/drug effects , Sleep/physiology , Infant , Brain Waves/drug effects , Brain Waves/physiology , Thalamus/drug effects , Thalamus/physiopathology , Spasms, Infantile/drug therapy , Spasms, Infantile/physiopathology
7.
Brain Connect ; 14(3): 182-188, 2024 Apr.
Article En | MEDLINE | ID: mdl-38343360

Background: This study investigated alterations in the intrinsic thalamic network of patients with juvenile myoclonic epilepsy (JME) based on an electroencephalography (EEG) source-level analysis. Materials and Methods: We enrolled patients newly diagnosed with JME as well as healthy controls. The assessments were conducted in the resting state. We computed sources based on the scalp electrical potentials using a minimum-norm imaging method and a standardized, low-resolution, brain electromagnetic tomography approach. To create a functional connectivity matrix, we used the Talairach atlas to define thalamic nodes and applied the coherence method to measure brain synchronization as edges. We then calculated the intrinsic thalamic network using graph theory. We compared the intrinsic thalamic network of patients with JME with those of healthy controls. Results: This study included 67 patients with JME and 66 healthy controls. EEG source-level analysis revealed significant differences in the intrinsic thalamic networks between patients with JME and healthy controls. The measures of functional connectivity (radius, diameter, and characteristic path length) were significantly lower in patients with JME than in healthy controls (radius: 2.769 vs. 3.544, p = 0.015; diameter: 4.464 vs. 5.443, p = 0.024; and characteristic path length: 2.248 vs. 2.616, p = 0.046). Conclusions: We demonstrated alterations in the intrinsic thalamic network in patients with JME compared with those in healthy controls based on the EEG source-level analysis. These findings indicated increased thalamic connectivity in the JME group. These intrinsic thalamic network changes may be related to the pathophysiology of JME.


Electroencephalography , Myoclonic Epilepsy, Juvenile , Thalamus , Humans , Myoclonic Epilepsy, Juvenile/physiopathology , Myoclonic Epilepsy, Juvenile/diagnostic imaging , Thalamus/physiopathology , Thalamus/diagnostic imaging , Male , Female , Electroencephalography/methods , Adult , Young Adult , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Neural Pathways/physiopathology , Adolescent , Brain Mapping/methods , Magnetic Resonance Imaging/methods
8.
Brain Stimul ; 17(2): 197-201, 2024.
Article En | MEDLINE | ID: mdl-38341176

BACKGROUND: Deep brain stimulation (DBS) of the thalamus can effectively reduce tics in severely affected patients with Tourette syndrome (TS). Its effect on cortical oscillatory activity is currently unknown. OBJECTIVE: We assessed whether DBS modulates beta activity at fronto-central electrodes. We explored concurrent EEG sources and probabilistic stimulation maps. METHODS: Resting state EEG of TS patients treated with thalamic DBS was recorded in repeated DBS-on and DBS-off states. A mixed linear model was employed for statistical evaluation. EEG sources were estimated with eLORETA. Thalamic probabilistic stimulation maps were obtained by assigning beta power difference scores (DBS-on minus DBS-off) to stimulation sites. RESULTS: We observed increased beta power in DBS-on compared to DBS-off states. Modulation of cortical beta activity was localized to the midcingulate cortex. Beta modulation was more pronounced when stimulating the thalamus posteriorly, peaking in the ventral posterior nucleus. CONCLUSION: Thalamic DBS in TS patients modulates beta frequency oscillations presumably important for sensorimotor function and relevant to TS pathophysiology.


Beta Rhythm , Deep Brain Stimulation , Thalamus , Tourette Syndrome , Humans , Tourette Syndrome/therapy , Tourette Syndrome/physiopathology , Deep Brain Stimulation/methods , Male , Thalamus/physiopathology , Thalamus/physiology , Adult , Beta Rhythm/physiology , Female , Electroencephalography , Young Adult , Cerebral Cortex/physiopathology , Cerebral Cortex/physiology , Middle Aged , Adolescent
9.
Mov Disord ; 39(4): 684-693, 2024 Apr.
Article En | MEDLINE | ID: mdl-38380765

BACKGROUND: The ventral intermediate nucleus of the thalamus (VIM) is an effective target for deep brain stimulation in tremor patients. Despite its therapeutic importance, its oscillatory coupling to cortical areas has rarely been investigated in humans. OBJECTIVES: The objective of this study was to identify the cortical areas coupled to the VIM in patients with essential tremor. METHODS: We combined resting-state magnetoencephalography with local field potential recordings from the VIM of 19 essential tremor patients. Whole-brain maps of VIM-cortex coherence in several frequency bands were constructed using beamforming and compared with corresponding maps of subthalamic nucleus (STN) coherence based on data from 19 patients with Parkinson's disease. In addition, we computed spectral Granger causality. RESULTS: The topographies of VIM-cortex and STN-cortex coherence were very similar overall but differed quantitatively. Both nuclei were coupled to the ipsilateral sensorimotor cortex in the high-beta band; to the sensorimotor cortex, brainstem, and cerebellum in the low-beta band; and to the temporal cortex, brainstem, and cerebellum in the alpha band. High-beta coherence to sensorimotor cortex was stronger for the STN (P = 0.014), whereas low-beta coherence to the brainstem was stronger for the VIM (P = 0.017). Although the STN was driven by cortical activity in the high-beta band, the VIM led the sensorimotor cortex in the alpha band. CONCLUSIONS: Thalamo-cortical coupling is spatially and spectrally organized. The overall similar topographies of VIM-cortex and STN-cortex coherence suggest that functional connections are not necessarily unique to one subcortical structure but might reflect larger frequency-specific networks involving VIM and STN to a different degree. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Deep Brain Stimulation , Essential Tremor , Magnetoencephalography , Subthalamic Nucleus , Humans , Male , Female , Middle Aged , Magnetoencephalography/methods , Subthalamic Nucleus/physiology , Subthalamic Nucleus/physiopathology , Aged , Deep Brain Stimulation/methods , Essential Tremor/physiopathology , Essential Tremor/therapy , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Thalamus/physiology , Thalamus/physiopathology , Brain Mapping , Cerebral Cortex/physiopathology , Ventral Thalamic Nuclei/physiology , Ventral Thalamic Nuclei/physiopathology
10.
Parkinsonism Relat Disord ; 99: 1-7, 2022 06.
Article En | MEDLINE | ID: mdl-35537274

INTRODUCTION: The pathophysiology of paroxysmal kinesigenic dyskinesia (PKD) remains elusive to date; however, several lines of evidence from neuroimaging studies suggest involvement of the basal ganglia-thalamocortical network in PKD. We combined fractional amplitude of low-frequency fluctuation (fALFF) and seed-based functional connectivity (FC) analyses in order to comprehensively investigate intrinsic brain activity alterations and their relationships with disease severity in patients with idiopathic PKD. METHODS: Resting-state functional MRI data were obtained and processed in 34 PKD patients and 34 matched controls. fALFF and seed-based FC maps were computed and compared between patients and controls. Linear regression analysis was further performed between regional fALFF values or FC strengths and clinical parameters in patients. RESULTS: PKD patients had a significant increase in fALFF in bilateral thalamus and cerebellum compared with controls. FC analysis seeding at the thalamic clusters revealed significant FC increases in motor cortex and supplementary motor area in PKD patients relative to controls. Longer disease duration was associated with increasing FC strength between the thalamus and motor cortex. CONCLUSION: We have provided evidence for abnormal intrinsic activity in the cerebello-thalamic circuit and increased thalamofrontal FC in PKD patients, implicating interictal cerebello-thalamofrontal dysconnectivity in the pathophysiology of PKD. Given the increasing FC strength in proportion to disease duration, the thalamofrontal hyperconnectivity might reflect either a consequence of recurrent dyskinesias on the brain or an innate pathology causing dyskinesias in PKD.


Cerebellum , Dystonia , Magnetic Resonance Imaging , Case-Control Studies , Cerebellum/pathology , Cerebellum/physiopathology , Humans , Magnetic Resonance Imaging/methods , Thalamus/pathology , Thalamus/physiopathology
11.
PLoS One ; 17(2): e0264114, 2022.
Article En | MEDLINE | ID: mdl-35196348

BACKGROUND: Balance impairment in Parkinson's disease is multifactorial and its changes due to subthalamic stimulation vary in different studies. OBJECTIVE: We aimed to analyze the combination of predictive clinical factors of balance impairment in patients with Parkinson's disease treated with bilateral subthalamic stimulation for at least one year. METHODS: We recruited 24 patients with Parkinson's disease treated with bilateral subthalamic stimulation and 24 healthy controls. They wore an Opal monitor (APDM Inc.) consisting of three-dimensional gyroscopes and accelerometers in the lumbar region. We investigated four stimulation conditions (bilateral stimulation OFF, bilateral stimulation ON, and unilateral right- and left-sided stimulation ON) with four tests: stance on a plain ground with eyes open and closed, stance on a foam platform with eyes open and closed. Age, disease duration, the time elapsed after implantation, levodopa, and stimulation responsiveness were analyzed. The distance of stimulation location from the subthalamic motor center was calculated individually in each plane of the three dimensions. We analyzed the sway values in the four stimulation conditions in the patient group and compared them with the control values. We explored factor combinations (with age as confounder) in the patient group predictive for imbalance with cluster analysis and a machine-learning-based multiple regression method. RESULTS: Sway combined from the four tasks did not differ in the patients and controls on a group level. The combination of the disease duration, the preoperative levodopa responsiveness, and the stimulation responsiveness predicted individual stimulation-induced static imbalance. The more affected patients had more severe motor symptoms; primarily, the proprioceptive followed by visual sensory feedback loss provoked imbalance in them when switching on the stimulation. CONCLUSIONS: The duration of the disease, the severity of motor symptoms, the levodopa responsiveness, and additional sensory deficits should be carefully considered during preoperative evaluation to predict subthalamic stimulation-induced imbalance in Parkinson's disease.


Deep Brain Stimulation , Parkinson Disease/physiopathology , Postural Balance , Adult , Aged , Female , Humans , Male , Middle Aged , Parkinson Disease/therapy , Thalamus/physiopathology
12.
Schizophr Bull ; 48(2): 505-513, 2022 03 01.
Article En | MEDLINE | ID: mdl-34525195

It has previously been shown that cerebello-thalamo-cortical (CTC) hyperconnectivity is likely a state-independent neural signature for psychosis. However, the potential clinical utility of this change has not yet been evaluated. Here, using fMRI and clinical data acquired from 214 untreated first-episode patients with schizophrenia (62 of whom were clinically followed-up at least once at the 12th and 24th months after treatment initiation) and 179 healthy controls, we investigated whether CTC hyperconnectivity would serve as an individualized biomarker for diagnostic classification and prediction of long-term treatment outcome. Cross-validated LASSO regression was conducted to estimate the accuracy of baseline CTC connectivity for patient-control classification, with the generalizability of classification performance tested in an independent sample including 42 untreated first-episode patients and 65 controls. Associations between baseline CTC connectivity and clinical outcomes were evaluated using linear mixed model and leave-one-out cross validation. We found significantly increased baseline CTC connectivity in patients (P = .01), which remained stable after treatment. Measures of CTC connectivity discriminated patients from controls with moderate classification accuracy (AUC = 0.68, P < .001), and the classification model had good generalizability in the independent sample (AUC = 0.70, P < .001). Higher CTC connectivity at baseline significantly predicted poorer long-term symptom reduction in negative symptoms (R = 0.31, P = .01) but not positive or general symptoms. These findings provide initial evidence for the putative "CTC hyperconnectivity" anomaly as an individualized diagnostic and prognostic biomarker for schizophrenia, and highlight the potential of this measure in precision psychiatry.


Cerebellum/physiology , Cerebral Cortex/physiology , Nerve Net/physiology , Schizophrenia/physiopathology , Thalamus/physiology , Adolescent , Adult , Area Under Curve , Cerebellum/physiopathology , Cerebral Cortex/physiopathology , Female , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/statistics & numerical data , Male , ROC Curve , Schizophrenia/therapy , Thalamus/physiopathology , Treatment Outcome
13.
Urology ; 159: 133-138, 2022 01.
Article En | MEDLINE | ID: mdl-34688769

OBJECTIVES: To detect seed-based functional connectivity (FC) between various cortical sub-regions and the thalamus in lifelong premature ejaculation (LPE) patients and explore whether specific thalamocortical networks are significantly altered in PE patients compared to healthy controls (HCs) METHODS: Fifty non-medicated LPE patients and 40 age-matched HCs underwent a resting-state functional MRI. FC was adopted to identify specific thalamocortical connectivity between the thalamus and 6 cortical regions of interest (i.e., the motor cortex/supplementary motor, the prefrontal cortex, the temporal lobe, the posterior parietal cortex, the somatosensory cortex and the occipital lobe). In LPE patients, regression analysis was subsequently conducted to assess relationships of thalamocortical connectivity with the Premature Ejaculation Diagnostic Tool (PEDT) score and the Intravaginal Ejaculatory Latency Time (IELT). RESULTS: LPE patients had significantly decreased FC between the motor cortex and bilateral ventral thalamus, between the prefrontal cortex and left dorsomedial thalamus, as well as between the temporal cortex and bilateral ventromedial thalamus. In LPE patients, PEDT score was significantly positively associated with the thalamus-posterior parietal cortex FC, and negatively associated with the thalamus-temporal cortex FC, while IELT was positively associated with the thalamus-temporal cortex and thalamus-motor cortex FC. CONCLUSION: These results enrich the imaging evidence for the understanding of the neurobiological mechanisms and/or consequences of LPE.


Cerebral Cortex , Connectome/methods , Nerve Net , Premature Ejaculation , Thalamus , Adult , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiopathology , Humans , Magnetic Resonance Imaging/methods , Male , Nerve Net/pathology , Nerve Net/physiopathology , Neurophysiology , Premature Ejaculation/diagnosis , Premature Ejaculation/physiopathology , Thalamus/diagnostic imaging , Thalamus/physiopathology
14.
Hum Brain Mapp ; 43(3): 940-954, 2022 02 15.
Article En | MEDLINE | ID: mdl-34698418

Naming is a commonly impaired language domain in various types of aphasia. Emerging evidence supports the cortico-subcortical circuitry subserving naming processing, although neurovascular regulation of the non-dominant thalamic and basal ganglia subregions underlying post-stroke naming difficulty remains unclear. Data from 25 subacute stroke patients and 26 age-, sex-, and education-matched healthy volunteers were analyzed. Region-of-interest-wise functional connectivity (FC) was calculated to measure the strength of cortico-subcortical connections. Cerebral blood flow (CBF) was determined to reflect perfusion levels. Correlation and mediation analyses were performed to identify the relationship between cortico-subcortical connectivity, regional cerebral perfusion, and naming performance. We observed increased right-hemispheric subcortical connectivity in patients. FC between the right posterior superior temporal sulcus (pSTS) and lateral/medial prefrontal thalamus (lPFtha/mPFtha) exhibited significantly negative correlations with total naming score. Trend-level increased CBF in subcortical nuclei, including that in the right lPFtha, and significant negative correlations between naming and regional perfusion of the right lPFtha were observed. The relationship between CBF in the right lPFtha and naming was fully mediated by the lPFtha-pSTS connectivity in the non-dominant hemisphere. Our findings suggest that perfusion changes in the right thalamic subregions affect naming performance through thalamo-cortical circuits in post-stroke aphasia. This study highlights the neurovascular pathophysiology of the non-dominant hemisphere and demonstrates thalamic involvement in naming after stroke.


Aphasia/physiopathology , Cerebral Cortex/physiopathology , Cerebrovascular Circulation/physiology , Connectome , Functional Laterality/physiology , Stroke/physiopathology , Thalamus/physiopathology , Adult , Aged , Aphasia/diagnostic imaging , Aphasia/etiology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Psycholinguistics , Stroke/complications , Stroke/diagnostic imaging
15.
J Neurol Neurosurg Psychiatry ; 93(2): 169-179, 2022 02.
Article En | MEDLINE | ID: mdl-34583941

OBJECTIVE: Visual hallucinations are common in Parkinson's disease (PD) and associated with worse outcomes. Large-scale network imbalance is seen in PD-associated hallucinations, but mechanisms remain unclear. As the thalamus is critical in controlling cortical networks, structural thalamic changes could underlie network dysfunction in PD hallucinations. METHODS: We used whole-brain fixel-based analysis and cortical thickness measures to examine longitudinal white and grey matter changes in 76 patients with PD (15 hallucinators, 61 non-hallucinators) and 26 controls at baseline, and after 18 months. We compared white matter and cortical thickness, adjusting for age, gender, time-between-scans and intracranial volume. To assess thalamic changes, we extracted volumes for 50 thalamic subnuclei (25 each hemisphere) and mean fibre cross-section (FC) for white matter tracts originating in each subnucleus and examined longitudinal change in PD-hallucinators versus non-hallucinators. RESULTS: PD hallucinators showed white matter changes within the corpus callosum at baseline and extensive posterior tract involvement over time. Less extensive cortical thickness changes were only seen after follow-up. White matter connections from the right medial mediodorsal magnocellular thalamic nucleus showed reduced FC in PD hallucinators at baseline followed by volume reductions longitudinally. After follow-up, almost all thalamic subnuclei showed tract losses in PD hallucinators compared with non-hallucinators. INTERPRETATION: PD hallucinators show white matter loss particularly in posterior connections and in thalamic nuclei, over time with relatively preserved cortical thickness. The right medial mediodorsal thalamic nucleus shows both connectivity and volume loss in PD hallucinations. Our findings provide mechanistic insights into the drivers of network imbalance in PD hallucinations and potential therapeutic targets.


Gray Matter/physiopathology , Hallucinations/physiopathology , Parkinson Disease/physiopathology , Thalamus/physiopathology , White Matter/physiopathology , Aged , Corpus Callosum/physiopathology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests
16.
J Clin Endocrinol Metab ; 107(3): e1167-e1180, 2022 02 17.
Article En | MEDLINE | ID: mdl-34665863

CONTEXT: About one-third of diabetic patients suffer from neuropathic pain, which is poorly responsive to analgesic therapy and associated with greater autonomic dysfunction. Previous research on diabetic neuropathy mainly links pain and autonomic dysfunction to peripheral nerve degeneration resulting from systemic metabolic disturbances, but maladaptive plasticity in the central pain and autonomic systems following peripheral nerve injury has been relatively ignored. OBJECTIVE: This study aimed to investigate how the brain is affected in painful diabetic neuropathy (PDN), in terms of altered structural connectivity (SC) of the thalamus and hypothalamus that are key regions modulating nociceptive and autonomic responses. METHODS: We recruited 25 PDN and 13 painless (PLDN) diabetic neuropathy patients, and 27 healthy adults as controls. The SC of the thalamus and hypothalamus with limbic regions mediating nociceptive and autonomic responses was assessed using diffusion tractography. RESULTS: The PDN patients had significantly lower thalamic and hypothalamic SC of the right amygdala compared with the PLDN and control groups. In addition, lower thalamic SC of the insula was associated with more severe peripheral nerve degeneration, and lower hypothalamic SC of the anterior cingulate cortex was associated with greater autonomic dysfunction manifested by decreased heart rate variability. CONCLUSION: Our findings indicate that alterations in brain structural connectivity could be a form of maladaptive plasticity after peripheral nerve injury, and also demonstrate a pathophysiological association between disconnection of the limbic circuitry and pain and autonomic dysfunction in diabetes.


Diabetic Neuropathies/physiopathology , Hypothalamus/physiopathology , Neuralgia/physiopathology , Primary Dysautonomias/physiopathology , Thalamus/physiopathology , Adaptation, Physiological , Adult , Aged , Autonomic Nervous System/physiology , Connectome , Diffusion Tensor Imaging , Female , Humans , Hypothalamus/diagnostic imaging , Male , Middle Aged , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Neural Pathways/physiopathology , Neuronal Plasticity/physiology , Thalamus/diagnostic imaging
17.
Schizophr Bull ; 48(1): 251-261, 2022 01 21.
Article En | MEDLINE | ID: mdl-34337670

BACKGROUND: Thalamocortical circuit imbalance characterized by prefronto-thalamic hypoconnectivity and sensorimotor-thalamic hyperconnectivity has been consistently documented at rest in schizophrenia (SCZ). However, this thalamocortical imbalance has not been studied during task engagement to date, limiting our understanding of its role in cognitive dysfunction in schizophrenia. METHODS: Both n-back working memory (WM) task-fMRI and resting-state fMRI data were collected from 172 patients with SCZ and 103 healthy control subjects (HC). A replication sample with 49 SCZ and 48 HC was independently obtained. Sixteen thalamic subdivisions were employed as seeds for the analysis. RESULTS: During both task-performance and rest, SCZ showed thalamic hyperconnectivity with sensorimotor cortices, but hypoconnectivity with prefrontal-cerebellar regions relative to controls. Higher sensorimotor-thalamic connectivity and lower prefronto-thalamic connectivity both relate to poorer WM performance (lower task accuracy and longer response time) and difficulties in discriminating target from nontarget (lower d' score) in n-back task. The prefronto-thalamic hypoconnectivity and sensorimotor-thalamic hyperconnectivity were anti-correlated both in SCZ and HCs; this anti-correlation was more pronounced with less cognitive demand (rest>0-back>2-back). These findings replicated well in the second sample. Finally, the hypo- and hyper-connectivity patterns during resting-state positively correlated with the hypo- and hyper-connectivity during 2-back task-state in SCZ respectively. CONCLUSIONS: The thalamocortical imbalance reflected by prefronto-thalamic hypoconnectivity and sensorimotor-thalamic hyperconnectivity is present both at rest and during task engagement in SCZ and relates to working memory performance. The frontal reduction, sensorimotor enhancement pattern of thalamocortical imbalance is a state-invariant feature of SCZ that affects a core cognitive function.


Cognitive Dysfunction/physiopathology , Connectome , Memory Disorders/physiopathology , Memory, Short-Term/physiology , Nerve Net/physiopathology , Prefrontal Cortex/physiopathology , Schizophrenia/physiopathology , Sensorimotor Cortex/physiopathology , Thalamus/physiopathology , Adult , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Female , Humans , Male , Memory Disorders/diagnostic imaging , Memory Disorders/etiology , Nerve Net/diagnostic imaging , Prefrontal Cortex/diagnostic imaging , Schizophrenia/complications , Schizophrenia/diagnostic imaging , Sensorimotor Cortex/diagnostic imaging , Thalamus/diagnostic imaging
18.
Hum Brain Mapp ; 43(3): 974-984, 2022 02 15.
Article En | MEDLINE | ID: mdl-34816523

Recent evidence suggests that presupplementary motor area (pre-SMA) and inferior frontal gyrus (IFG) play an important role in response inhibition. However, no study has investigated the relationship between these brain networks at resting-state and response inhibition in obsessive-compulsive disorder (OCD). We performed resting-state functional magnetic resonance imaging scans and then measured the response inhibition of 41 medication-free OCD patients and 49 healthy control (HC) participants by using the stop-signal task outside the scanner. We explored the differences between OCD and HC groups in the functional connectivity of pre-SMA and IFG associated with the ability of motor response inhibition. OCD patients showed a longer stop-signal reaction time (SSRT). Compared to HC, OCD patients exhibit different associations between the ability of motor response inhibition and the functional connectivity between pre-SMA and IFG, inferior parietal lobule, dorsal anterior cingulate cortex, insula, and anterior prefrontal cortex. Additional analysis to investigate the functional connectivity difference from the seed ROIs to the whole brain voxels revealed that, compared to HC, OCD exhibited greater functional connectivity between pre-SMA and IFG. Also, this functional connectivity was positively correlated with the SSRT score. These results provide additional insight into the characteristics of the resting-state functional connectivity of the regions belonging to the cortico-striato-thalamo-cortical circuit and the cingulo-opercular salience network, underlying the impaired motor response inhibition of OCD. In particular, we emphasize the importance of altered functional connectivity between pre-SMA and IFG for the pathophysiology of motor response inhibition in OCD.


Cerebral Cortex/physiopathology , Connectome , Corpus Striatum/physiopathology , Inhibition, Psychological , Motor Activity/physiology , Motor Cortex/physiopathology , Nerve Net/physiopathology , Obsessive-Compulsive Disorder/physiopathology , Thalamus/physiopathology , Adult , Cerebral Cortex/diagnostic imaging , Corpus Striatum/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Motor Cortex/diagnostic imaging , Nerve Net/diagnostic imaging , Obsessive-Compulsive Disorder/diagnostic imaging , Thalamus/diagnostic imaging , Young Adult
19.
Int J Mol Sci ; 22(22)2021 Nov 09.
Article En | MEDLINE | ID: mdl-34830020

Two distinct types of neuronal activity result in long-term depression (LTD) of electrical synapses, with overlapping biochemical intracellular signaling pathways that link activity to synaptic strength, in electrically coupled neurons of the thalamic reticular nucleus (TRN). Because components of both signaling pathways can also be modulated by GABAB receptor activity, here we examined the impact of GABAB receptor activation on the two established inductors of LTD in electrical synapses. Recording from patched pairs of coupled rat neurons in vitro, we show that GABAB receptor inactivation itself induces a modest depression of electrical synapses and occludes LTD induction by either paired bursting or metabotropic glutamate receptor (mGluR) activation. GABAB activation also occludes LTD from either paired bursting or mGluR activation. Together, these results indicate that afferent sources of GABA, such as those from the forebrain or substantia nigra to the reticular nucleus, gate the induction of LTD from either neuronal activity or afferent glutamatergic receptor activation. These results add to a growing body of evidence that the regulation of thalamocortical transmission and sensory attention by TRN is modulated and controlled by other brain regions. Significance: We show that electrical synapse plasticity is gated by GABAB receptors in the thalamic reticular nucleus. This effect is a novel way for afferent GABAergic input from the basal ganglia to modulate thalamocortical relay and is a possible mediator of intra-TRN inhibitory effects.


Electrical Synapses/physiology , Long-Term Synaptic Depression/genetics , Neuronal Plasticity/genetics , Receptors, GABA-B/genetics , Animals , Humans , Long-Term Synaptic Depression/physiology , Neurons/metabolism , Neurons/physiology , Rats , Thalamus/metabolism , Thalamus/physiopathology , Ventral Thalamic Nuclei/metabolism , Ventral Thalamic Nuclei/physiopathology
20.
J Neurosci ; 41(50): 10382-10404, 2021 12 15.
Article En | MEDLINE | ID: mdl-34753740

The cerebral cortex, basal ganglia and motor thalamus form circuits important for purposeful movement. In Parkinsonism, basal ganglia neurons often exhibit dysrhythmic activity during, and with respect to, the slow (∼1 Hz) and beta-band (15-30 Hz) oscillations that emerge in cortex in a brain state-dependent manner. There remains, however, a pressing need to elucidate the extent to which motor thalamus activity becomes similarly dysrhythmic after dopamine depletion relevant to Parkinsonism. To address this, we recorded single-neuron and ensemble outputs in the basal ganglia-recipient zone (BZ) and cerebellar-recipient zone (CZ) of motor thalamus in anesthetized male dopamine-intact rats and 6-OHDA-lesioned rats during two brain states, respectively defined by cortical slow-wave activity and activation. Two forms of thalamic input zone-selective dysrhythmia manifested after dopamine depletion: (1) BZ neurons, but not CZ neurons, exhibited abnormal phase-shifted firing with respect to cortical slow oscillations prevalent during slow-wave activity; and (2) BZ neurons, but not CZ neurons, inappropriately synchronized their firing and engaged with the exaggerated cortical beta oscillations arising in activated states. These dysrhythmias were not accompanied by the thalamic hypoactivity predicted by canonical firing rate-based models of circuit organization in Parkinsonism. Complementary recordings of neurons in substantia nigra pars reticulata suggested that their altered activity dynamics could underpin the BZ dysrhythmias. Finally, pharmacological perturbations demonstrated that ongoing activity in the motor thalamus bolsters exaggerated beta oscillations in motor cortex. We conclude that BZ neurons are selectively primed to mediate the detrimental influences of abnormal slow and beta-band rhythms on circuit information processing in Parkinsonism.SIGNIFICANCE STATEMENT Motor thalamus neurons mediate the influences of basal ganglia and cerebellum on the cerebral cortex to govern movement. Chronic depletion of dopamine from the basal ganglia causes some symptoms of Parkinson's disease. Here, we elucidate how dopamine depletion alters the ways motor thalamus neurons engage with two distinct oscillations emerging in cortico-basal ganglia circuits in vivo We discovered that, after dopamine depletion, neurons in the thalamic zone receiving basal ganglia inputs are particularly prone to becoming dysrhythmic, changing the phases and/or synchronization (but not rate) of their action potential firing. This bolsters cortical dysrhythmia. Our results provide important new insights into how aberrant rhythmicity in select parts of motor thalamus could detrimentally affect neural circuit dynamics and behavior in Parkinsonism.


Dopamine/deficiency , Neurons/physiology , Parkinsonian Disorders/physiopathology , Thalamus/physiopathology , Animals , Male , Rats
...